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A Planar Integral Equation Method for the Analysis of Dielectric Ridge Structures
Using Generalized Boundary Conditions
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Abstract-

A novel method is developed to calculate the propaga-
tion characteristics of dielectric ridge structures in high
frequency monolithic integrated circuits. First, the elec-
tric field in the .diélectric ridge is .expressed in terms of
a polarization .current from which an equivalent surface
current density is defined. Further, generalized boundary
conditions are enforced in order to provide a simple inte-
gral equation. Results derived by this modified integral
equation approach give excellent agreement with other
numerical methods. The main advantage of this tech-
nique is that it simplifies greatly the analysis of three-
dimensional complex structures.

1 INTRODUCTION

At the present time, almost all monolithic circuits are
made of thin strip conductors which provide simplicity
in the fabrication and desired guiding properties for fre-
quencies up to-the millimeter-wave region. However, this
technology introduces radiation and chmic losses which
‘become unacceptably high as the frequency approaches
the terahertz region. In order to avoid these limitations,
novel dielectric guiding structures and circuit elements
operating in-theterahertz regime have been recently pro-
posed that use-epitaxial semiconducting materials or het-
erostructures on GaAs or InP substrates [1], [2]. These
low-loss ridged and semi-embedded lines (Figure 1) are
appropriate for high frequency monolithic applications
and cembine easy fabrication with good guiding proper-
ties and electrically small size. However, to design these
circuit elements a rigourous theoretical characterization
of the waveguiding structures is needed.

Theoretical studies on geometrically simple optical and
microwave dielectric waveguides have been presented in
the past decade using approximate or numerical meth-
ods. The approximate methods are represented by an
analytical approximation introduced by Marcatili [3] and
by the effective index method 4], [5]. The numerical
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a) Ridged Waveguides

b) Embedded Waveguides

Figure 1: -General configuration.of low-loss ridged waveguides using
heterostructures

‘methods are divided into variational methods [6], mode-

matching methods, finite-element methods [7] and inte-

gral equation methods using polarization currents (8].

These methods have been exclusively applied to two-
dimensional problems. Most of existing numerical tech-

‘niques perform a fine discretization of the cross-section

introducing many unknowns and strong numerical insta-
bilities. ‘Consequently, an .extension of these methods
to three dimensional problems introduces many practi-
cal limitations and requires special care {9].

This paper presents a two-dimensional methodology
which is rather unique in terms of combined accuracy
and simplicity and ‘has demonstrated excellent perfor-
mance when applied to basic dielectric structures. TFur-

thermeore, the major advantage of this technique is that
it can easily be extended to three dimensional problems
without increasing the complexity of the solution. In this
mathematical scheme, the formulation of the electric field
in terms of equivalent electric and magnetic polarization
currents is shown to lead to a modified integral equation
eigenproblem.

1991 IEEE MTT-S Digest

OF-li



2 THEORY

For the sake of simplicity in the presentation of the
technique and without loss of generality, we consider the
dielectric structure shown in Figure 2 with nonmagnetic
materials and with the thickness 2h equal to a fraction of
the dielectric wavelength and small compared to the strip
width. Under these assumptions, the material of region
(3) may be replaced by an equivalent electric polarization
current distribution occupying volume V3. This current
distribution is given by:

Jp(F) = jw(es — e0) Es

where Ej is the electric field in region (3).

ey

We now define an equivalent planar current sheet ex-
tending over the surface S.. This current is given in terms
of the electric polarization current J by the following re-

lation
T=["Jd

The electric field throughout volume V3 can be written
in terms of the electric field on the upper and lower in-
terface of the surrounding surface S3 by using a Taylor’s
expansion as shown below

2y) =Y ot [an’?yﬁf’y)} i@ ©)
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where f(z) is given by
f(l‘):{ (z—-h) if0<x<h

(z+h)" f-h<x<L0
In view of (3), equation (2) takes the form
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This equivalent surface current density radiates an elec-
tromagnetic field given by the following equation:

E,(z,y) =/_j;z[5(x,y/w’,y’)]x,=o Ly (8)

where G is the dyadic Green’s function for the problem.
If the dielectric ridge is inside a rectangular waveguide
section, this function can be found analytically as a su-
perposition of all the propagating and attenuating modes
in the inhomogeneously filled waveguide (see Fig 2b). For
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Figure 2: Equivalent polarization current

free space problems, the Green’s function is written in
terms of Sommerfeld integrals. In order to make the two
boundary value problems presented in Figure 2 equiva-
lent, the radiated field £, given by equation (8) has to
be identical to the original field E on the surface S sur-
rounding volume V3. As a result, these fields satisfy the
following equations:

rE,  oE
ozn 8 n

Yn=0,1,.. (9)

. on 5’3.

On the other hand, the fields E and B, satisfy the ap-
propriate boundary conditions across the upper S5 and

lower S5 parts of the surface surrounding volume Vi,
namely:

‘% X EBIz::th

e (&- Es)!::ih-
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(10)
(11)

In addition, the y- and z- derivatives of the above fields

on the air-dielectric interface are simply related through
the following equations:
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where ¢ denotes the y or z coordinate.
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However, the relations between the derivatives of the
above fields with respect to the direction vertical to the
air-dielectric interface on S§ and S5 are related through
somehow more complicated expressions which can be put
in the following general form:

N 3"E3 . . (omE
[ - a2 w

O Es = [0mE
€3 oy = € -Fs (81’” x_ih) (15)
z==%h
m = 1,.,n

where f_:_, F_ are known analytical vector functions in-
cluding higher order derivatives of E on the interfaces St
and 53 respectively. In equations (10) - (15), €3 is the
dielectric constant of the medium in V3, and ¢ is equal to
€y when z = h and ¢, when z = —A.

In view of the above, equation (7) takes the form

1 -
— i x,34] ], =
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wf2 -
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where G is a modified Green’s function given by

G 2,9/ y om0 = 32 5 Gaur, (Byi 4, ¥') Blkoz). (17)

ke Ky

In equation (17), k, and k, are the eigenvalues along
the x and y directions respectively, A{k,z) is a harmonic
function of x and §,.(y,y’) is a dyadic function with
harmonic dependence on y,y’. This dyadic function re-
sults in simple closed-form expressions that account for
the infinite summations of the derivatives. In the case
of open structures, the summations of equation (17) are
replaced by semi-infinite integrals. Equation (16) can be
solved numerically to provide the unknown components
of the equivalent surface current density. This equivalent
current can then be used to derive the field distribution
inside volume V3.

3 RESULTS AND DISCUSSION

As a demonstration of the validity of the presented
technique, the structure of Figure 3 has been analyzed
and the propagation constant of the dominant mode has
been computed as a function of the width of the dielec-
tric strip. As predicted for the extreme cases w = 0 and
w = b, the structure simplifies to a partially-filled waveg-
uide with three (or four) homogeneous dielectric regions,
for which the propagation constants are simply found by
solving the appropriate characteristic equations [10], [11].
In Figure 4, the phase constant of the dominant mode has
been computed as a function of frequency. In this mode,
the electric field component which is parallel to the di-
electric interface (E,) is a few orders of magnitude larger
than the other two components. The theoretical results
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of this method show very good agreement with theoreti-
cal results derived from the classical 2-D modal analysis
[2]. As can be seen in Figure 4, the technique applies very
efficiently even for electrically thick ridges (w = 0.25 Ag
at 120 GHz).

The proposed method can also be extended to lav-

ered structures by appropriately modifying the Taylor’s
expansion to account for the existence of the layers and
the appropriate boundary conditions on the interfaces be-
tween them. Then, the solution can proceed exactly as
has been previously described. As another application,
this technique can be used to study the propagation char-
acteristics and field distributions of optical waveguides,
such as VLSI interconnects constructed from polyamide
strips on GaAs substrates.

The planar integral equation technique can be fur-
ther applied to study three-dimensional passive circuit
elements such as power dividers, impedance transform-
ers, bends and stubs. Such an extension is rather simple.
With the replacement of the volume polarization current
with an equivalent current of lower dimensionality, the
original problem is simplified and can be treated as any
other three-dimensional problem with unknown planar
current densities [12]. The development of this technique
allows the design of novel monolithic circuits which can
provide high performance at frequencies up to the tera-
hertz region [13].

4 CONCLUSIONS

A modified planar integral equation approach has been
developed for the analysis of monolithic structures using
equivalent polarization currents. Propagation character-
istics are presented for a dielectric ridge on a layered sub-
strate and compare very closely to other well-established
numerical methods. The main advantage of this method
lies in its simplicity when applied to the theoretical char-
acterization of more complex 3-D circuit elements. The
technique presented in this paper will be implemented
to study different geometries of low-loss dielectric ridge
lines and the derived theoretical results will be validated
by extensive experiments.
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Figure 4: Comparison between the madified Green’s function and
the modal expansion method (w =0.5 mm, h = 62.5 um, s = 250
BN, Estrip = 2, €substrate = 12)



