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A Planar integral Equation Method for the Analysis of Dielectric Ridge Structures

Using Generalized Boundary Conditions
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Abstract-

A novel method is developed to calculate the propaga-

tion characteristics of dielectric ridge structures in ‘high

frequency monolithic integrated circuits. First, the elec-

tric field in the dielectric ridge is expressed in terms of

a polarization current from which an equivalent surface

current density is defined. Further, generalized boundary

conditions are enforced in order to provide a simple inte-

gral equation. Results derived by this modified integral

equation approach give excellent agreement with other

numerical methods. The main advantage of this tech-

nique is that it simplifies greatly the analysis of three-

dimensional complex structures.

a) Ridged Waveguidaa

b) Embedded Waveguidea

.1 INTRODUCTION

At the present time, .ahnost all monolithic circuits are

made of thin strip conductors which provide simplicity

in the fabrication and desired guiding properties for fre-

quencies up to the millimeter-wave region. However, this

technology ‘introduces radiation and ohmic losses which

become unacceptably high as the frequency approaches

the terahertz region. In order to avoid these limitations,

novel dielectric guiding structures and circuit elements

operating in the terahertz regime have been recently pro-

posed that use epitaxial semiconducting materials or het-

erost ruct ures on GaAs or lnP substrates [1], [2]. These

low-loss ridged and semi-embedded lines (Figure 1) are

appropriate for high frequency monolithic applications
and combine easy fabrication with good guiding proper-
ties and electrically smaH size. However, to design these
circuit elements a rigourous ‘theoretical characterization
of the waveguiding structures is needed.

Theoretical studies on geometrically simple optical and

microwave dielectric waveguides have been presented in

the past decade using approximate or numerical meth-

ods. The approximate methods are represent ed by an

analytical approximation introduced by Marcatili [3] and

by the effective index method [4], [5]. The numerical

Figu~e 1: General configuration of low-loss ridged waveguides using

heterostructures

methods are divided into variational methods [6], mode-

mat thing methods, finite-element methods [7] and inte-

gral equation methods using polarization currents [8].

These methods have been exclusively applied to two-

dimensional problems, Most of existing numerical tech-

niques perform a fine dlscretization of the cross-section

introducing many unknowns and strong numerical insta-

bilities. Consequently, an extension of these methods

to three dimensional problems introduces many practi-

cal limit ations and requires special care [9].

This paper presents a two-dimensional methodology

which is rather unique in terms of combined accuracy

and simplicity and ‘has demonstrated excellent perfor-

mance when applied to basic dielectric structures. Fur-

thermore, the major advantage of this technique is that

it can easily be extended to three dimensional problems

without increasing the complexity of the solution. In this

mathematical scheme, the formulation of the electric field

in terms of equivalent electric and magnetic polarization
currents is shown to lead to a modified integral equation

eigenproblem.
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2 THEORY

For the sake of simplicity in the presentation of the

technique and without loss of generality, we consider the

dielectric structure shown in Figure 2 with nonmagnetic

materials and with the thickness 2h equal to a fraction of

the dielectric wavelength and small compared to the strip

width. Under these assumptions, the material of region

(3) may be replaced by an equivalent electric polarization

current distribution occupying volume V3. This current

distribution is given by:

where 83 is the electric field in region (3).

We now define an equivalent planar current sheet ex-

tending over the surface S,. This cu~ent is given in terms

of the electric p olarizat ion current JP by the following re-

Iat ion

I
hz= fpdx.

–h
(2)

The electric field throughout volume V3 can be written

in terms of the electric field on the upper and lower in-

terface of the surrounding surface S3 by using a Taylor’s

expansion as shown below

where f(o) is given by

(4)

In view of (3), equation (2) takes the form

where

[1m (– I)”+’h”+’ 6’”J%(Z,y)
~ = jw(e. – L%)~

.=O r(~ + 2) ax”
(6)

z=h

and

m hn+l

~- = jw(% – 60)~
[1

&E3(x, y)

.=O r(~ + 2) ax”
. (7)

~=–h

This equivalent surface current density radiates an elec-

tromagnetic field given by the following equation:

m%?4)= p;, [ G($,Y/~’, ?/)]~,=o . 2(Y’)W (8)

where G is the dyadic Green’s function for the problem.

If the dielectric ridge is inside a rectangular waveguide

section, this function can be found analytically as a su-

perposition of all the propagating and attenuating modes

in the inhomogeneously filled waveguide (see Fig 2b). For

b x

V.

x=h
t_

Y
s,; ------=-~-; ~-—----,,

x=-h

Figure 2: Equivalent polarization current

free space problems, the Green’s function is written in

terms of Somrnerfeld integrals. In order to make the two

boundary value problems presented in Figure 2 equiva-

lent, the radiated field E, given by equation (8) has to

be identical to the original field 1? on the surface S3 sur-

rounding volume V3. As a result, these fields satisfy the

following equations:

13”,E (9”2
-=== ‘VIZ=O,l,... O7ZS3.
8X”

(9)

On the other hand, the fields ~ and ~3 satisfy the ap-

propriate boundary conditions across the upper S: and

lower S; parts of the surface surrounding volume V3,

namely:

i X Elc+h = ~ x &j.=*h (lo)
‘5(i .E)/c=*h= es(i .&)lz=*h. (11)

In addition, they- and z- derivatives of the above fields

on the air-dielectric interface are simply related through

the following equations:

where ( denotes the y or z coordinate.
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However, the relations between the derivatives of the

above fields with respect to the direction vertical to the

air-dielectric interface on S; and S; are related through

somehow more complicated expressions which can be put

in the following general form:

m= 1,.., n
. .

where T+, F_ are known analytical vector functions in-
.

eluding higher order derivatives of E on the interfaces S:

and S; respectively. In equations (10) - (15), C3 is the

dielectric constant of the medium in V3, and e is equal to

e. when x = h and ez when x = —h.

In view of the above, equation (7) takes the form

where G’ is a modified Green’s function given by

G’(z, y/i, y’)d=o = ~~9kzk,(&; ?/, Y’) wL~). (17)
k. ky

In equation (17), ,& and JCUare the eigenvalues along

the x and y directions respectively, h(kzz) is a harmonic

function of x and ij~n(y, y’) is a dyadic function with

harmonic dependence on y, y’. This dyadic function re-

sults in simple closed-form expressions that account for

the infinite summations of the derivatives. In the case

of open structures, the summations of equation (17) are

replaced by semi-infinite integrals. Equation (16) can be

solved numerically to provide the unknown components

of the equivalent surface current density. This equivalent

current can then be used to derive the field distribution

inside volume V3.

3 RESULTS AND DISCUSSION

As a demonstration of the validity of the presented

technique, the structure of Figure 3 has been analyzed

and the propagation constant of the dominant mode has

been computed as a function of the width of the dielec-

tric strip. As predicted for the extreme cases w = O and

w = b, the structure simplifies to a partially-filled waveg-

uide with three (or four) homogeneous dielectric regions,

for which the propagation constants are simply found by

solving the appropriate characteristic equations [1 O], [11].

In Figure 4, the phase const ant of the dominant mode has

been computed as a function of frequency. In this mode,

the electric field component which is parallel to the di-

electric interface ( Ev ) is a few orders of magnitude larger

than the other two components. The theoretical results

of this method show very good agreement with theoreti-

cal results derived from the classical 2-D modal anal ysis

[2]. As can be seen in Figure 4, the technique applies very

efficiently even for electrically thick ridges ( w = 0,2.5 ,1~

at 120 GHz).

The proposed method can also be extended to lav-

ered structures by appropriately modifying the Taylor’s

expansion to account for the existence of the layers and

the appropriate boundary conditions on the interfaces be-

tween them. Then, the solution can proceed exactly as

has been previously described. As another application,

this technique can be used to study the propagation char-

acteristics and field distributions of optical waveguides,

such as VLSI interconnects constructed from polyamide

strips on GaAs substrates.

The planar integral equation technique can be fur-

ther applied to study three-dimensional passive circuit

elements such as power dividers, impedance transform-

ers, bends and stubs. Such an extension is rather simple.

With the replacement of the volume polarization current

with an equivalent current of lower dimensionality, the

original problem is simplified and can be treated as any

other three-dimensional problem with unknown planar

current densities [12]. The development of this technique

allows the design of novel monolithic circuits which can

provide high performance at frequencies up to the tera-

hertz region [13].

4 CONCLUSIONS

A modified planar integral equation approach has been

developed for the analysis of monolithic structures using

equivalent polarization currents. Propagation character-

istics are presented for a dielectric ridge on a layered sub-

strate and compare very closely to other well-established

numerical methods. The main advantage of this method

lies in its simplicity when applied to the theoretical char-

act erizat ion of more complex 3-D circuit elements. The

technique presented in this paper will be implemented

to study different geometries of low-loss dielectric ridge

lines and the derived theoretical results will be validated

by extensive experiments.
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Figure 4: Comparison between the modified Green’s function and

the modal expansion method (w = 0.5 mm, h = 62.5 pm, s = 250
pm, c,t,jP = 2, C,tib,,..t. = 12)
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